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Comparison of optimizers’ performance in the compression of MNIST 

handwriting  

Abstract: An undercomplete autoencoder model learns 

the principal features from the input Modified National 

Institute of Standards and Technology (MNIST) training 

datasets. The reliability of principal features in codeword 

depends on loss convergence ability of optimizer and 

activation function. In this paper, the convergence ability of 

optimizers and activation functions are studied by training 

the model for 100 epochs. The result shows that Adaptive 

Moment Estimation (Adam) optimizer exhibits sharp decay 

of Mean Square Error (MSE) both in linear and non-linear 

activation functions. The non-linear activation outperforms 

the linear activation during compression of MNIST 

handwriting. This result would be helpful in dimensionality 

reduction application such as image compression. 
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I. INTRODUCTION 

The term ‘auto association’ was used on Multilayer 

Perceptron Network (MLPN) used for dimensionality 

reduction application like image compression working on 

auto-association mode. The non-linearities unit of MLPN 

are useless and optimal parameter values can be derived 

directly by pure linear techniques relying on Single Value 

Decomposition (SVD) [1]. 

An auto association exhibited by linear activation is a 

special case of Principal Component Analysis (PCA). 

The error function E has a unique local and global 

minimum while others are saddle points [2]. 

The development of deep belief network, layer wise 

pretraining of deep network, dimensionality reduction 

and stacking of Restricted Boltzman Machines (RBMS) 

are major paradigm leading to the development of deep 

learning autoencoder. The effective way of initializing 

weight allows autoencoder to learn low-dimensional 

code better than PCA [3]. 

In unsupervised learning, pretraining of Artificial 

Neural Network (ANN) subjects the neural net towards 

minima, minimizing variance and introducing bias. The 

effect of pretraining in unsupervised learning has similar 

effect of regularization in neural network [4]. 

The motive of this research work is to find the right 

optimizer and activation function that exhibits early 

convergence of loss function. The basis for assumption is 

that linear activation in the hidden layer should exhibit or 

outperform non-linear activation as dimensionality 

reduction is a special case of linear PCA inferred from 

[1],[2]. The unimodal error surface in the linear model 

should reach towards global minima early; thereby, 

helping the model to learn feature in a reduced dimension 

quickly and more appropriately. The non-linear 

activation function and optimizer with an ability to learn 

feature would be useful to pretrain supervised model 

exhibiting non-linearities. 

II. FRAMEWORK AND METHODS 

A. Under complete autoencoder 

An undercomplete autoencoder shown in the Fig. 1 

consists of a smaller number of neurons in a hidden layer 

than the input layer. The codeword ℎ  passing through 

various encoding layers 𝑓 can be written as ℎ = 𝑓(𝑋),  

and the output Y passing through decoding layers g can 

be written as 𝑌 = 𝑔(ℎ) = 𝑔(𝑓(𝑋)).  The learning in 

under complete auto-encoder is achieved without prior 

information or label, therefore undercomplete 

autoencoder follows unsupervised learning approach. 

The cost function is defined such that architecture is 

forced to replicate input neurons in output layer and can 

be expressed mathematically by the MSE loss function 

J(W, b; x, y)  in equation (1) [5]. 

𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1

𝑚
∑ (0.5 ∗ (𝑦(𝑖) − 𝑥(𝑖))2)

𝑚

𝑖=1
  (1) 

Where, 𝑚 is the batch size used in training the model, 𝑥 

and 𝑦  are the input and output neuron vectors 

respectively. The biases and weights of the model gets 

updated by the gradient descent algorithm and their 

adjustment occurs by backpropagation [5]. The mini-

batch gradient descent convergence can be accelerated by 

using optimizers. The optimizers used in the model are 

listed below. 

1. Adaptive Gradient (AdaGrad) 

2. Root Mean Square Propagation (RMSProp) 

3. Adadelta 

4. Adaptive Moment estimation (Adam)   

Also, the activations sigmoid, linear and Rectified Linear 

Unit (ReLU) are used in training the model. All of these 

activation functions are non-linear except linear 

activation.  

B. Experiment dataset and methodology 

The MNIST data set [6], shown in Fig. 2, consists of 

60,000 training set examples and 10,000 test set 

examples. The data set required for training is retrieved 

using Keras Application Programming Interface (API) 

[7]. The gray scale image of 28*28 image centered 

towards the center of mass of pixel is normalized first and 

reshaped to arrays of size 784. 
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Fig. 1: Undercomplete autoencoder model used in image 

compression 

A seven layers autoencoder neural network 

architecture is created in Python using Keras API. The 

first layer consists of 784 input neurons, and subsequent 

second and third layers consist of 128 and 64 neurons 

respectively. The fourth layer, codeword representing 

layer, consists of 36 neurons. This results in a 

compression ratio around 22. A decoding layer, 

implemented as mirror of encoding layer, consists of 64, 

128 and 784 neurons respectively. 

The weight initialization by using Xavier-Glorot 

technique and bias initialization using zeros are chosen 

for the model. The gradient descent algorithm is executed 

in the batch of size 500 for 100 epochs using different 

optimizers. The results of different optimizers are 

obtained when ReLU and sigmoid are respectively used 

in hidden and output layer (NL-NL activation). Similarly, 

results are obtained for linear activation in hidden layer 

and sigmoid in output layer (L-NL activation). This was 

followed by linear activation both in hidden and output 

layer (L-L activation).  

III. DATA ANALYSIS AND RESULTS 

A. Data observation of NL-NL activation 

The graph in Fig. 3 (a) shows the loss convergence of 

different optimizers in NL-NL activation. The mini-batch 

gradient descent and Adagrad optimizer with learning 

rate 1 shows quick decay of loss function. The error falls 

exponentially in RMSprop and Adadelta optimizer with 

learning rates 0.001 and 1  respectively. The comparative 

graphs in Fig. 3 (a) show that adam optimizer have a 

sharp decay curve and the least MSE at the end of 100 

epochs. The fading errors curve of Adadelta and Adagrad 

appears to be overlapping. The similar observation holds 

true in case of RMSprop and mini-batch gradient descent. 

 

Fig. 2: Samples of MNIST dataset 

B. Data observation of L-NL activation 

 In Adam, the learning rate 0.001 exhibits abrupt and 

earlier decay of loss function outperforming all other 

optimizers. This is shown in the graph of Fig. 3 (b) The 

decay curve of Adagrad of learning rate 1 and RMSprop 

of learning rate 0.001 appears to overlapping. However, 

observing data up to hundred thousandth decimal point 

RMSprop outperforms Adagrad at the end of 100 epochs. 

The similar graph exists in mini-batch gradient descent 

and Adadelta where Adadelta outperforms at end of 100 

epochs. 

C. Data observation of L-L activation 

The graph in Fig. 3 (c) shows error curve of Adam 

optimizer plunging with least MSE at the end of 100 

epochs. The error curve of mini-batch gradient descent 

and Adadelta optimizers fades following the same 

trajectory and appears to be overlapping. However, mini-

batch gradient outperforms at the end of 100 epochs. 

During the training, Adagrad optimizer with learning rate 

1 gives rise to model instability. Therefore, the learning 

rate 0.01 is preferred during training. The RMSprop and 

Adam optimizers exhibits better error decay in L-L 

activation. 

D. Result and Analysis  

The loss function is given in equation (1). The most 

of optimization techniques exhibit no significant decay of 

loss function after 50 epochs. Therefore, MSE at the end 

of 50 epoch are compared. The graph in Fig. 3 and 

parameters in Table I are evaluated to infer suitable 

optimizer and activation function. 

The linear model exhibiting unimodal error surface is 

expected to reach towards global minima quickly; 

however, such observation is not realized. This might be 

due to complex features existing within the training 

dataset. The non-linear activation consisting of multiple 

local valleys in error surface realizes the feature existing 

in MNIST dataset more accurately. The experiment 

results in Table I and Fig. 4 demonstrate that linear 

activation function in hidden layer along with non-linear 

activation in the output should be preferred for early 

convergence of loss function in the compression of 

MNIST handwriting. The L-NL activation learns 

complex feature from the dataset and maps the encoded 

codewords appropriately outperforming both the NL-NL 

activation and L-L activation.  

The non-linear activation with Adam optimizer 

demonstrates sharp decay of loss function. The concept 

of first and second orders estimation in Adam optimizer 

accelerate and prevent annealing of learning rate properly 

to converge the loss function.  

The dimensionality reduction transforms the data 

from higher input dimensional space to lower 

dimensional space where variance of the data is 
maximized. In this simulation, 784 input neurons are 

represented by 36 neurons in reduced dimension. The 

observation shows that non-linear activation with Adam 

optimizer realizes the feature duly and rapidly. Therefore, 

Adam optimizer with non-linear activation can be used in 
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(a) 

(b) 

(c) 

dimensionality reduction application such as 

compression. 

IV. CONCLUSION 

In this paper, convergence of different optimizers and 

activation functions are analyzed for the MNIST datasets. 

The loss functions of various optimizers are plotted for 

linear-nonlinear, linear-linear and nonlinear-nonlinear 

activation functions at hidden and output layers 

respectively.  The mini-batch gradient descent with 

Adam optimizer activated by nonlinear function 

outperforms all other optimizers in the compression of 

MNIST handwriting.  

The experiment is performed using MNIST data as a 

training and test dataset. The inference will be strong if 

different input dataset results are analyzed.  

 

 

 

Fig. 3: Various optimizers epoch Vs loss graph. (a) NL-NL 

activation. (b) L-NL activation. (c) L-L activation (η is the 

learning rate) 

TABLE I GRADIENT DESCENT (GD) OPTIMIZER MSE LOSS 

AT END OF 50 EPOCHS  

GD 

optimizer 

MSE 

L-NL 

Activation 

NL-NL 

Activation 

L-L 

Activation 

Mini-batch 

GD 

1.975e-02 3.193e-02 1.856e-02 

Adagrad 1.261e-02 2.048e-02 5.871e-02 

RMSprop 1.215e-02 2.170e-02 1.591e-02 

Adadelta 1.948e-02 3.165e-02 1.877e-02 

Adam 8.362e-03 8.802e-03 1.578e-02 

 

 

 

 

 

Fig. 4: Original image and reconstruction of predicted image 

using Adam optimizer at the end of 50 epochs. First row: Original 

image, second row: L-L activation, third row: NL-NL activation  , 

fourth row: L-NL activation 
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